

Experimental and Therapeutic Medicine

[Journal Home](#)[Current Issue](#)[Forthcoming Issue](#)[Special Issues](#)[Most Read](#)[Most Cited \(Dimensions\)](#)[Most Cited \(CrossRef\)](#)[Social Media](#)[Archive](#)**Information**[Online Submission](#)[Information for Authors](#)[Language Editing](#)[Information for Reviewers](#)[Editorial Policies](#)[Editorial Board](#)[Join Editorial Board](#)[Aims and Scope](#)[Abstracting and Indexing](#)[Bibliographic Information](#)[Information for Librarians](#)

Methylene blue relieves the development of osteoarthritis by upregulating lncRNA MEG3

[Open Access](#)**Retraction in 10.3892/etm.2024.12562**

Authors: Xinyi Li, Chaoliang Tang, Jin Wang, Peipei Guo, Chengyao Wang, Yanlin Wang, Zongze Zhang, Huisheng Wu

[View Affiliations](#)

Published online on: March 2, 2018 <https://doi.org/10.3892/etm.2018.5918>

Pages: 3856-3864

Copyright: © Li et al. This is an open access article distributed under the terms of [Creative Commons Attribution License](#).

April-2018**Volume 15 Issue 4**

Print ISSN: 1792-0981

Online ISSN: 1792-1015

[Sign up for eToc alerts](#)[Recommend to Library](#)**Article Options**[Download article](#)[View Abstract](#)[Full Text](#)[Citations](#)[Cite This Article](#)[Download Citation](#)[Create Citation Alert](#)[Cited By](#)[Related Articles](#)[on Spandidos Publications](#)[Similar Articles](#)[on Google Scholar](#)[on Pub Med](#)

35

35 Total citations
8 Recent citations
9.3 Field Citation Ratio
1.58 Relative Citation Ratio

1 Posted by 1 X users

24 readers on Mendeley

[See more details](#)**Abstract**

Methylene blue (MB) is a long-term inhibitor of peripheral nerve axons, thereby alleviating or permanently eliminating pain. However, it remains unknown whether MB

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

[permissions](#)[Contact the Editor](#)[General Information](#)[About Spandidos](#)[Conferences](#)[Job Opportunities](#)[Contact](#)[Terms and Conditions](#)

joint following injection of 1 mg/kg MB at 1, 4, 8 and 24 weeks post-injection. Compared with the vehicle control, MB treatment significantly enhanced the weight distribution and significantly decreased the swelling ratio of the rabbits. Additionally, levels of long non-coding RNA (lncRNA) maternally expressed 3 (MEG3) mRNA were significantly increased following treatment with MB, but the protein expression of P2X purinoceptor 3 (P2X3) was significantly suppressed compared with the vehicle control. The levels of interleukin (IL) 6, tumor necrosis factor (TNF)α, IL-18 and IL-8 were significantly suppressed following MB treatment, indicating that MB protects against OA progression. It was also revealed that MEG3 overexpression significantly suppresses levels of P2X3 protein. ELISA indicated that the MEG3-induced reduction of IL-6, TNFα, IL-18 and IL-8 expression was significantly reversed following P2X3 overexpression. Therefore, the results of the present study demonstrated that MB is an effective method of treating OA-associated pain by upregulating lncRNA MEG3 levels. Additionally, lncRNA MEG3 relieves the OA-associated pain and inflammation in a rabbit model of OA by inhibiting P2X3 expression.

[Journal Metrics](#)

Impact Factor: 2.4

Ranked Medicine

Research and

Experimental

(total number of cites)

Introduction

Osteoarthritis is the most common type of joint disease; patients may develop stiff joints which are painful to move [1,2]. Chronic pain is a major problem for millions of patients with OA [3] and the key focus of OA treatment is to reduce pain and improve joint function. However, for older patients, relieving pain is considered to be more important than improving joint function [4,5]. For moderate and severe OA, long-term oral medication is not effective [6]. Joint replacement therapy may be effective at treating OA in certain cases; however there are a number of problems, including trauma, high cost and the risks associated with surgery [7]. To improve the therapeutic options available for patients with OA, it is necessary to explore alternative safe and effective treatment methods [8–10].

Methylene blue (MB) is an anti-oxidative and anti-inflammatory agent, which is used to treat clinical pain syndromes, malaria and psychotic disorders [11,12]. Previous studies have demonstrated that MB exhibits a strong affinity for nerve tissue and may be used as a long-term inhibitor of peripheral nerve axons, thus alleviating pain in patients with OA [13–15]. Neuropathic pain is a type of chronic pain caused by nervous system damage and dysfunction [16]. The pathogenesis of chronic pain is complicated; recent studies have suggested that the activation of P2X purinoceptor 3 (P2X3) receptors serve a key role during the progression of chronic pain conditions [17,18].

Long non-coding RNAs (lncRNAs) are long transcription RNAs containing >200 nucleotides [19]. It has been demonstrated that the pathogenesis of OA is closely associated with aberrantly expressed lncRNAs, including HOX transcript antisense RNA (HOTAIR), lncRNA-co-repressor interacting with RBPJ, 1 (CIR), lncRNA-H19, imprinted maternally expressed transcript (H19) and lncRNA-maternally expressed 3 (MEG3) [19–21]. It has been suggested that there is a negative correlation between decreased lncRNA MEG3 and vascular endothelial growth factor levels in patients with OA [22]. However, to the best of our knowledge, whether MB treatment regulates the expression of MEG3 in the progression of OA has never been explored.

In the present study, the effects of MB on the expression of lncRNA MEG3 in the articular cavity were evaluated. The results revealed that the expression of MEG3 was increased following MB treatment and further investigation demonstrated that the enhanced expression of lncRNA MEG3 inhibited the expression of P2X3, thereby suppressing pain and inflammation in a rabbit model of OA.

Materials and methods

Animal model of OA

A total of 120, specific pathogen free, male New Zealand white rabbits (11–12 weeks; weighing 2.1–2.3 kg) were used to investigate the effects of MB on the pathogenesis of OA. All animals were purchased from the animal center of the Zhongnan Hospital of Wuhan University (Wuhan, China). Rabbits were kept in a controlled environment with a

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

approved by the Ethics Committee of the Zhongnan Hospital of Wuhan University.

Animals were anesthetized with intravenous pentobarbital (32.4 mg/kg) prior to 1–4% isoflurane administered via inhalation to maintain anesthesia, followed by subcutaneous infusion of lidocaine (~3 ml) in the right leg during surgery. The rabbits were under general anesthesia during this process. The meniscus of the right leg was completely removed. Briefly, the boundary between the patellar ligament and the articular capsule of the right hind leg and the lateral-collateral ligament were dissected. The articular capsule was subsequently removed to expose the interior meniscus and the meniscus was removed. Following total meniscectomy of the right knee joint, rabbits were randomly divided into either a vehicle- or MB-treated group (n=10/group). Intra-articular treatment was initiated 7 days post-surgery. To evaluate the safety of MB in the articular cavity, different concentrations of MB [0.5, 1 and 2 mg/kg; cat. no. CAS:122965-43-9; Meryer (Shanghai) Chemical Technology Co., Ltd., Shanghai, China] or the same volume of vehicle control (saline) were injected into the articular cavity and the rabbits were euthanized after 1, 2, 4, 8, 12 or 24 weeks as a preliminary investigation performed prior to the other procedures. There were 30 rabbits in each group. For all subsequent studies, rabbits in the MB-treated group were administered with 1 mg/kg MB. The rabbits used for the preliminary experiment were the same ones as used in the primary study.

Measurement of pain

Changes in hind paw weight distribution between the right (OA model) and left (contralateral control) limbs were measured as a pain index using the previously described method [23]. Hind-paw weight distribution was measured after 1, 2, 4, 8, 12 and 24 weeks. The percentage of weight distribution of the right hind paw was calculated using the following equation: Weight distribution of right hind paw [%]=[weight of the right leg]/[weights of both legs] ×100.

Measurement of swelling

At 42 days following meniscectomy, articular swelling was measured using a digital vernier caliper. The maximum widths of the right and left hind paws were measured and recorded. The percentage of swelling was calculated as follows: Swelling ratio [%]=[width of the right knee-width of the left knee]/[width of the right knee+width of the left knee] ×100.

Histopathological examination

Histopathological examination was performed as previously described [24]. Rabbits were anesthetized and euthanized at 24 weeks post MB or saline treatment and the left paw of all rabbits in each group was cut above and below the 0.5 cm of the joints. To leave the synovial membrane intact, the muscle and skin of the joints were trimmed away. All tissues were treated with 3% hydrochloric acid (HCl) solution for 5–7 days and HCl was replaced every 24 h to allow complete decalcification of joints. Joints were subsequently fixed in 10% neutral buffered formalin for 2 days at room temperature. Decalcified joints of the rabbits were then dehydrated in an ascending series of alcohol and embedded in liquid paraffin. Embedded sections were sliced into 5-μm-thick sections and tissues were stained with hematoxylin and eosin (H&E) at room temperature for 3 min. Slides were evaluated using a light microscope at magnification of $\times 40$ (DXIT 1200; Nikon Corporation, Tokyo, Japan). H&E stained joint slides were examined for bone and cartilage destruction by synovial hyperplasia. For the estimation of synovial proliferation, the following scoring system was used: No change, 0; mild proliferation with 2–4 layers of synoviocytes, 1; moderate proliferation with >4 layers of synoviocytes and absent synovial cell invasion of adjacent connective tissue and bone with enhanced mitotic activity, 2; proliferation distinguished by adjacent cartilage and effacement of joint space, connective tissue and bone, 3.

Cell culture

Cell culture was performed as previously described [25]. Human chondrogenic SW1353 cells (American Type Culture Collection, Manassas, VA, USA) were cultured in Dulbecco's modified Eagle's medium (DMEM; Thermo Fisher Scientific, Inc., Waltham, MA, USA) containing 10% fetal bovine serum (HyClone; GE Healthcare Life Sciences,

This site uses cookies

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). I agree

atmosphere with 5% CO₂.

Western blot analysis

Total protein was isolated from articular tissues or SW1353 cells using a total protein extraction kit (cat no. KGP2100; Nanjing KeyGen Biotech Co., Ltd., Nanjing, China). A bicinchoninic protein assay kit (Pierce; Thermo Fisher Scientific, Inc.) was used to determine the protein concentration. A total of 20 µg protein was loaded per lane and separated by 12% SDS-PAGE and transferred onto polyvinylidene difluoride membranes. Membranes were then blocked with 5% fat-free milk at room temperature for 2 h. The membrane was incubated with primary antibodies against P2X3 (cat. no. ab140870; 1:1,000; Abcam, Cambridge, UK) and β-actin (cat. no. 4970; 1:5,000; Cell Signaling Technology, Inc., Danvers, MA, USA), which was used as a control at 4°C overnight. Membranes were subsequently incubated with horseradish peroxidase (HRP)-conjugated goat anti-rabbit immunoglobulin G (1:5,000; ZB-2301; OriGene Technologies, Inc., Beijing, China) for 2 h at room temperature and then washed three times using Tris-buffered saline and Tween-20. The signals were detected using a Super ECL Plus kit (Nanjing KeyGen Biotech Co., Ltd.) and quantified using a GelDoc-It® TS2 310 Imager with UVP software (UVP, LLC, Upland, CA, USA). The relative contents of protein were normalized against GAPDH and ImageJ software version 1.43b (National Institutes of Health, Bethesda, MD, USA) was used for densitometry analysis.

Reverse transcription-quantitative polymerase chain reaction (RT-qPCR)

RNA was isolated from articular tissues or SW1353 cells using RNA TRIzol reagent (Life Sciences; Thermo Fisher Scientific, Inc.) following the manufacturer's protocol. Total RNA was subsequently reverse transcribed to cDNA using SuperScript™ III Reverse Transcriptase (Invitrogen, Thermo Fisher Scientific, Inc.) following the manufacturer's protocol. The primers for RT-qPCR were designed using Primer3 version 0.4.0 (bioinfo.ut.ee/primer3-0.4.0/) and the Basic Local Alignment Search Tool was run for online specificity, which eliminated nonspecific amplification of PCR (ncbi.nlm.nih.gov/tools/primer-blast/index.cgi?LINK_LOC=BlastHome). qPCR was performed using SYBR Green PCR Master mix (Roche Diagnostics, Basel, Switzerland) on an Applied Biosystems ViiA 7 Real-time PCR system (Thermo Fisher Scientific, Inc.). The final reaction volume was 10 µl and contained 5 µl SYBR Green PCR Master mix (2X), 0.5 µl forward and 0.5 µl reverse primers (10 mM), 2 µl cDNA and 2 µl double-distilled water. The sequences of all primers used are presented in Table I. The thermocycling conditions of qPCR were: Denaturation at 95°C for 10 min, followed by 40 cycles of 95°C for 10 sec and 60°C for 60 sec. The results were normalized to GAPDH expression to obtain ΔCq values and fold changes in expression were calculated using the 2^{-ΔΔCq} method [26].

Table I.

Primers used for reverse transcription-quantitative polymerase chain reaction.

ELISA

ELISA was performed out as previously described [27]. In brief, frozen articular tissues (~100 mg) were homogenized in lysis buffer (50 mmol/l Tris-HCl, 300 mmol/l NaCl, 5 mmol/l EDTA, 1% Triton X-100 and 0.02% sodium azide) containing a protease inhibitor cocktail (Roche Diagnostics). Lysates were centrifuged at 16,000 × g for 15 min at 4°C and levels of TNF-α (cat no. DY5670), IL-6 (cat. no. DY7948) (both R&D Systems, Inc., Minneapolis, MN, USA), IL-1β (cat. no. JEB-14488) and IL-8 (cat. no. JEB-14519) (both Nanjing Jin Yibai Biotechnology Company Ltd., Nanjing, China) in the supernatants were quantified using ELISA assays following the manufacturer's protocols. Samples were read at 450 nm using a microplate reader.

Transfection

Small interfering (si)RNA against lncRNA MEG3 (forward, 5'-GGUCCGCUUCCAUUCAAUCCUUC-3' and reverse,

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

were purchased from Shanghai GenePharma Co., Ltd. (Shanghai, China). Transfection of siMEG3 or NC was performed using the HiPerFect transfection reagent (Qiagen GmbH, Hilden, Germany) following the manufacturer's protocol. Briefly, 6×10^5 SW1353 cells/well were seeded in 6-well plates with 2 ml DMEM containing serum and antibiotics. A total of 5 μ l siMEG3 (4 μ M) and 5 μ l non-specific siRNA (NC; 4 μ M) for each well were mixed with the HiPerFect transfection reagent and incubated at room temperature for 10 min. The complex was subsequently added to the wells and the cells were incubated for a further 48 h prior to investigation.

Promoter reporter analysis

A promoter reporter assay was performed as previously described [28]. The PGL3 promoter vector and the PRL-TK vector were purchased from Promega Corporation (Madison, WI, USA) and used as the internal control. The promoter region of P2X3 was amplified from the genomic DNA of rabbit articular cartilages. The amplification was performed using a TrasnDirect Animal Tissue PCR kit (Beijing Transgen Biotech Co., Ltd., Beijing, China). In brief, 4 μ l unpurified lysate was mixed with 0.4 μ l forward primer, 0.4 μ l reverse primer, 10 μ l 2xTransDirect PCR SuperMix, and 5.2 μ l ddH₂O. The PCR conditions were 94°C for 10 min, followed by 35 cycles of 94°C for 30 sec, 55°C for 30 sec, 72°C for 1 min, and a final extension step of 72°C for 5 min. The primers for P2X3 were as follows: P2X3 forward, GGAATACCGCTGACACCCAA; and P2X3 reverse, GGAGCGGGCGAATCCATTAT. The PGL3 promoter vector and amplified fragments were digested by *Xhol* and *Kpn*l and purified by 2% agarose gel electrophoresis. The digested fragment was then inserted into the PGL3 vector upstream of the simian vacuolating virus 40 promoter. 293T cells (American Type Culture Collection) were co-transfected with the PGL3 vector and the PRL-TK vector using the VigoFect Transfection reagent (Vigorous Biotechnology Beijing Co., Ltd., Beijing, China). Cells were harvested and lysed 48 h post-transfection. The relative light units were determined using the Dual-luciferase reporter assay system (Promega Corporation) according to the manufacturer's protocol. Normalized luciferase data (firefly/renilla) was compared with the empty PGL3-promoter vector. The primers for amplification were as follows: P2X3, forward, 5'-GGGTACCAAGGCCACAGGCAGAACTACTA and reverse, 5'-CCTCGAGAGGAGGTAGGTGGTGGTCGT. The restriction sites for *Kpn*l and *Xhol* are underlined.

Construction of plasmid (pc)MEG3 and pcP2X3

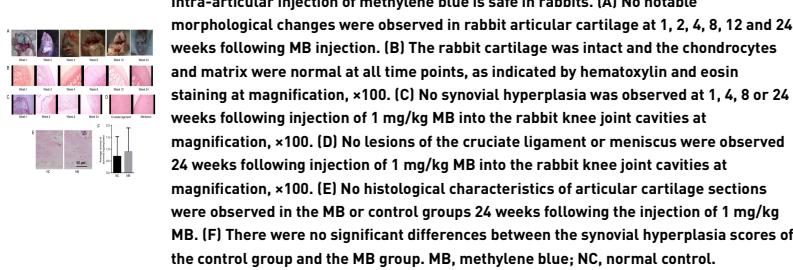
To upregulate MEG3 in SW1353 cells, pcP2X3, pcMEG3 or blank pcDNA vectors were constructed by GenChem&GenPharm (Changzhou) Co., Ltd., Changzhou, China). In brief, 6×10^5 SW1353 cells/well were seeded in 6-well plates with 2 ml DMEM containing serum and antibiotics. After 24 h, the pcMEG3, blank pcDNA or pcP2X3 vectors were transfected into SW1353 cells for 48 h at a final concentration of 25 nM using the VigoFect Transfection reagent according to the manufacturer's protocol. The cells underwent transfection for 48 h and the cells were then collected for further study.

Statistical analysis

Comparisons were performed using Origin version 6.1 software (OriginLab Corporation, Northampton, MA, USA). A 2-tailed t-test was used to compare paired data and one-way analysis of variance followed by Tukey's post hoc analysis was used to compare multiple groups. P<0.05 was considered to indicate a statistically significant difference. All experiments were performed a minimum of three times.

Results

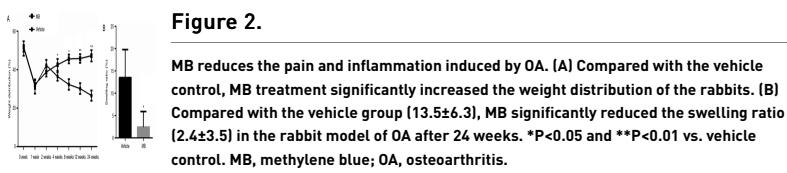
Intra-articular injection of MB is safe


Rabbits were treated with 0.5, 1 or 2 mg/kg MB to evaluate its safety. The results revealed that MB treatment did not induce any changes in articular cartilage and the level of synovial hyperplasia (data not shown). In subsequent studies, 1 mg/kg MB was selected to evaluate the effects of MB on a rabbit model of OA. A total of 1 mg/kg MB was injected into the joint cavity of the rabbit knees. No notable morphological changes were observed in the rabbit articular cartilage at 1, 2, 4, 8, 12 and 24 weeks post-injection [Fig. 1A]. The cartilage was intact and the chondrocytes and matrix were

This site uses cookies

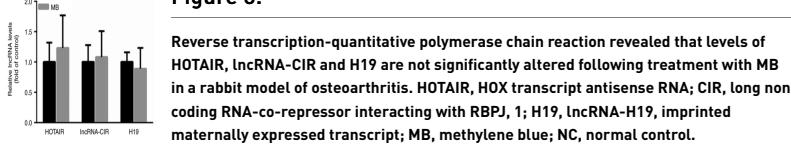
You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). I agree

following injection (Fig. 1C). At 24 weeks following injection, no lesions of the cruciate ligament or the meniscus were observed (Fig. 1D) and no notable damage was identified in the important histological structures of the knee joint. In addition, no histological characteristics of articular cartilage sections were observed in the MB group or the control group 24 weeks following injection (Fig. 1E). According to the synovial hyperplasia scoring system, no significant changes in synovial hyperplasia scores were identified between the MB and the control groups at 24 weeks following the injection of 1 mg/kg MB (Fig. 1F). These results suggest that the intra-articular injection of MB is safe in rabbits.


Figure 1.

MB reduces the pain and inflammation induced by OA

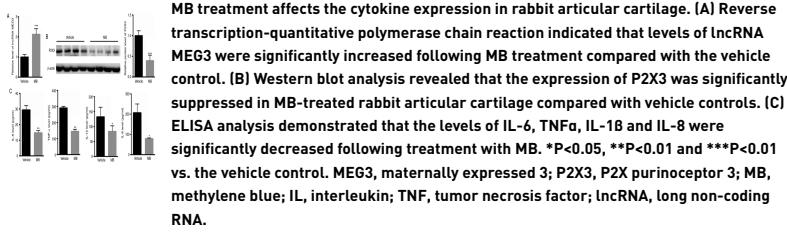
The right paw weight distribution of the rabbits was investigated from weeks 0–24 (Fig. 2A). Rabbits in the vehicle and MB groups recovered from the surgical stress observed at week 1. Following week 2, the weight distribution of the right paw in the vehicle-treated group gradually decreased over time, suggesting that OA was induced by the meniscectomy. By contrast, weight distribution was significantly higher in the MB-treated group compared with the vehicle-treated group from week 4 onwards. These results indicate that MB decreases pain in a rabbit model of OA. The swelling ratio between the vehicle and MB-treated groups was also investigated. Compared with the vehicle group (13.5 ± 6.3), the MB group exhibited a significantly reduced swelling ratio (2.4 ± 3.5) at week 24 (Fig. 2B). These results indicate that MB suppresses the swelling caused by OA inflammation in a rabbit meniscectomy OA model and suggest that MB may be an effective method of treating pain and inflammation induced by OA.


Figure 2.

HOTAIR, lncRNA-CIR and H19 levels do not change following MB treatment in a rabbit model of OA

HOTAIR, CIR and H19 are associated with OA [19,21,29] and in the present study, it was evaluated whether MB treatment altered the expression of these lncRNAs. RT-qPCR was performed and the results revealed that the levels of HOTAIR, lncRNA-CIR and H19 were not significantly altered following MB treatment in a rabbit model of OA compared with the non-treated control group (Fig. 3).

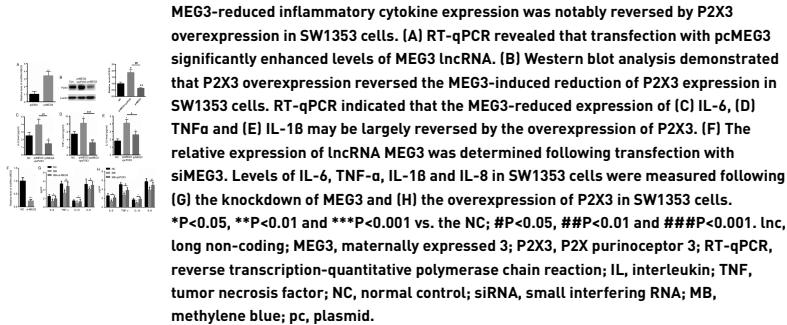
Figure 3.


P2X3 expression is reduced and MEG3 mRNA expression is increased in MB-

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). I agree

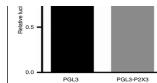
The results of RT-qPCR revealed that the expression of lncRNA MEG3 was significantly increased in the MB group compared with the vehicle group (Fig. 4A). By contrast, western blot analysis indicated that the protein expression of P2X3 was significantly reduced in the MB-treated group compared with the vehicle treated group (Fig. 4B). Additionally, it was revealed that levels of the inflammatory factors IL-6, TNF α , IL-1 β and IL-8 were all significantly reduced in the MB treated group compared with the vehicle treated group (Fig. 4C).


Figure 4.

The upregulation of MEG3-reduced inflammation cytokine expression may be reversed by P2X3 in SW1353 cells

To further evaluate whether MB alleviates pain and inflammation by regulating MEG3 and P2X3, SW1353 cells were treated with pcMEG3 to upregulate MEG3 expression. Transfection with pcMEG3 for 48 h significantly increased the mRNA level of MEG3 in SW1353 cells compared with the control (Fig. 5A). The overexpression of P2X3 induced by the administration of pcP2X3 eliminated the significant reduction in P2X3 expression induced by MEG3 overexpression in SW1353 cells (Fig. 5B). ELISA indicated that the MEG3-reduced expression of IL-6, TNF α and IL-1 β were reversed following P2X3 overexpression (Fig. 5C-E). It was also determined whether MEG3 and P2X3 reverse the effects of MB on the expression of IL-6, TNF α , IL-1 β and IL-8. A specific siRNA targeting MEG3 was selected and RT-qPCR revealed that transfection with si-MEG3 significantly suppressed MEG3 mRNA expression in SW1353 cells (Fig. 5F). Furthermore, knockdown of lncRNA MEG3 and overexpression of P2X3 significantly reversed the MB-induced reductions of IL-6, TNF α , IL-1 β and IL-8 levels in SW1353 cells (Fig. 5G and H). These results indicate that MB attenuates the progression of OA by enhancing lncRNA MEG3 and suppressing P2X3 expression.

Figure 5.



P2X3 is not a downstream target of MEG3

To elucidate the potential mechanism by which MEG3 modulates the expression of P2X3, the promoter region of P2X3 was cloned into a luciferase reporter vector. PGL3-P2X3 plasmids and the PRL-TK vector were transfected into 293T cells for 48 h. A dual luciferase reporter assay did not reveal any significant changes between the blank vector or the PGL3-P2X3 vector in 293T cells (Fig. 6). These results suggest that MEG3 does not directly regulate the transcription of P2X3; therefore further studies are required to explore the underlying mechanism by which MEG3 alters P2X3 expression.

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

The dual luciferase reporter assay did not reveal any significant changes between the blank vector or the PGL3-P2X3 vector in 293T cells. P2X3, P2X purinoceptor 3.

Discussion

MB induces long-term analgesic effects and is extensively applied in the clinic. MB may be locally applied in the perianal area where it suppresses peripheral nerve conduction, thereby relieving the long-term pain caused by surgery [30,31]. Local injection of 0.2% MB suppresses long-term peripheral nerve medulla pain to treat neurodermatitis [11,13]. It has also been revealed that the injection of MB into the fracture space of patients with pelvic fractures who were treated with in-screw augmented sacroiliac screw fixation, provided an analgesic effect for ~3 weeks [32]. However, to the best of our knowledge, it has not yet been explored whether MB may be applied to treat OA-associated pain.

Patients with OA can experience chronic pain, which has an impact on their quality of life [33,34]. Pain signals are conveyed through the signal transduction and transmission of primary afferent neurons, spinal dorsal horn neurons and the central nervous system, including the cerebral cortex [35]. In peripheral tissues, noxious stimulation may directly activate ion channels on sensory nerve endings, thus evoking receptor potentials [36]. In addition, noxious stimulation may be caused by mediators released by epithelial and endocrine immune cells, thereby indirectly activating afferent nerve endings [37]. Adenosine triphosphate is one of the inflammatory mediators that may cause pain via the activation of P2X receptors [38,39]. P2X3 receptor activation is closely correlated with inflammatory pain [40]. It has been reported that the downregulation of P2X3 receptor expression may be involved in acupuncture analgesia in the spinal cord of rats with chronic constriction injuries [41], suggesting that the P2X3 receptor serves an essential role in the regulation of peripheral and central nervous system pain.

In the present study, no significant damage was observed in important histological structures of the knee joint following injection of 1 mg/kg MB for 1–24 weeks. Additionally, no significant histological changes in the articular cartilage were identified following treatment with MB in a rabbit model of OA and the level of synovial hyperplasia was not altered. These results suggest that MB is safe to use to treat OA.

Furthermore, MB treatment significantly enhanced the weight distribution and significantly decreased the swelling ratio of the rabbits compared with the vehicle group, indicating that MB may potentially serve a protective role in spinal cord injury. Furthermore, lncRNAs may serve an important role during OA progression; HOTAIR, lncRNA-CIR, H19 and MEG3 are all associated with OA [19–21]. In the current study, RT-qPCR was performed to measure levels of HOTAIR, lncRNA-CIR and H19 mRNA, and it was demonstrated that they were not significantly altered following MB treatment. However, MB treatment significantly increased MEG3 levels. Therefore, the present study primarily focused on lncRNA MEG3, which is decreased in patients with OA [22]. The results revealed that MB treatment significantly enhanced lncRNA MEG3 expression in rabbits; however, the expression of P2X3 protein was significantly decreased in MB-treated rabbits compared with the vehicle controls. Further investigations were performed to evaluate the potential association between lncRNA MEG3 and P2X3. It was observed that the overexpression of lncRNA MEG3 significantly suppressed the expression of P2X3. One potential mechanism by which lncRNA MEG3 regulates P2X3 expression is via proteasomal degradation or an RNA binding protein, which is involved in altering mRNA and protein stability; however, further investigations are required to confirm this. To further evaluate whether MEG3 alleviates pain and inflammation by regulating P2X3, SW1353 cells were treated with a plasmid overexpressing P2X3. This upregulation of P2X3 expression attenuated the MEG3-induced reduction of IL-6, TNF α , IL-1 β and IL-8 levels in SW1353 cells.

The potential mechanism by which lncRNA MEG3 regulates the expression of P2X3 was also investigated. A dual luciferase reporter assay did not reveal any significant changes between the blank vector and the PGL3-P2X3 vector following lncRNA MEG3 overexpression in 293T cells, indicating that MEG3 does not exert a direct effect on P2X3

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

and inflammation.

In conclusion, to the best of our knowledge, the present study is the first to report that MB suppresses OA-associated pain and inflammation by enhancing lncRNA MEG3 expression and suppressing the expression of P2X3. These results may provide an insight into potential methods of alleviating pain in patients with OA.

Competing interests

The authors declare that they have no competing interests.

References

- 1 Laires PA, Laíns J, Miranda LC, Cernadas R, Rajagopalan S, Taylor SD and Silva JC: Inadequate pain relief among patients with primary knee osteoarthritis. *Rev Bras Reumatol.* Oct 28-2016.(Epub ahead of print). [PubMed/NCBI](#)
- 2 Taylor N: Nonsurgical management of osteoarthritis knee pain in the older adult. *Clin Geriatr Med.* 33:41-51. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 3 Laslett LL, Otahal P, Hensor EM, Kingsbury SR and Conaghan PG: Knee pain predicts subsequent shoulder pain and the association is mediated by leg weakness: Longitudinal observational data from the osteoarthritis initiative. *J Rheumatol.* 43:2049-2055. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 4 Miyamoto S, Nakamura J, Ohtori S, Orita S, Nakajima T, Omae T, Hagiwara S, Takazawa M, Suzuki M, Suzuki T and Takahashi K: Pain-related behavior and the characteristics of dorsal-root ganglia in a rat model of hip osteoarthritis induced by mono-iodoacetate. *J Orthop Res.* 35:1424-1430. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 5 O'Brien KM, Williams A, Wiggers J, Wolfenden L, Yoong S, Campbell E, Kamper SJ, McAuley J, Attia J, Oldmeadow C and Williams CM: Effectiveness of a healthy lifestyle intervention for low back pain and osteoarthritis of the knee: Protocol and statistical analysis plan for two randomised controlled trials. *Braz J Phys Ther.* 20:477-489. 2016. [PubMed/NCBI](#)
- 6 Reginster JY, Deroisy R, Rovati LC, Lee RL, Lejeune E, Bruyere O, Giacovelli G, Henrotin Y, Dacre JE and Gossett C: Long-term effects of glucosamine sulphate on osteoarthritis progression: A randomised, placebo-controlled clinical trial. *Lancet.* 357:251-256. 2001. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 7 Lange T, Rataj E, Kopkow C, Lützner J, Günther KP and Schmitt J: Outcome assessment in total knee arthroplasty: A systematic review and critical appraisal. *J Arthroplasty.* 32:653-665.e1. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 8 Poulsen E, Overgaard S, Vestergaard JT, Christensen HW and Hartvigsen J: Pain distribution in primary care patients with hip osteoarthritis. *Fam Pract.* 33:601-606. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 9 Riis RG, Henriksen M, Klokke L, Bartholdy C, Ellegaard K, Bandak E, Hansen B, Bliddal H and Boesen M: The effects of intra-articular glucocorticoids and exercise on pain and synovitis assessed on static and dynamic magnetic resonance imaging in knee osteoarthritis: Exploratory outcomes from a randomized controlled trial. *Osteoarthritis Cartilage.* 25:481-491. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 10 Ruhdorfer A, Wirth W and Eckstein F: Association of knee pain with a reduction in thigh muscle strength-a cross-sectional analysis including 4553 osteoarthritis

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

- 11 Roldan CJ, Nouri K, Chai T and Huh B: Methylene blue for the treatment of intractable pain associated with oral mucositis. *Pain Pract.* 17:1115–1121. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 12 Farrokhi MR, Lotfi M, Masoudi MS and Gholami M: Effects of methylene blue on postoperative low-back pain and functional outcomes after lumbar open disectomy: A triple-blind, randomized placebo-controlled trial. *J Neurosurg Spine.* 24:7–15. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 13 Luca A, Alexa T, Dondaş A, Crăcană IM, Bădescu M and Bohotin C: The effects of riboflavin and methylene blue on nociception and visceral pain. *Rev Med Chir Soc Med Nat Iasi.* 119:466–472. 2015. [PubMed/NCBI](#)
- 14 Salman AE, Salman MA, Saricaoglu F, Akinci SB and Aypar Ü: Pain on injection of propofol: A comparison of methylene blue and lidocaine. *J Clin Anesth.* 23:270–274. 2011. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 15 Tan KY and Seow-Choen F: Methylene blue injection reduces pain after lateral anal sphincterotomy. *Tech Coloproctol.* 11:68–69. 2007. [PubMed/NCBI](#)
- 16 Kuan YH and Shyu BC: Nociceptive transmission and modulation via P2X receptors in central pain syndrome. *Mol Brain.* 9:582016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 17 Chen S, Zhang L, Xu R, Ti Y, Zhao Y, Zhou L and Zhao J: The BDKRB2 +9/-9 polymorphisms influence pro-inflammatory cytokine levels in knee osteoarthritis by altering TLR-2 expression: Clinical and in vitro studies. *Cell Physiol Biochem.* 38:1245–1256. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 18 Marchenkova A, Vilotti S, Ntamat N, van den Maagdenberg AM and Nistri A: Inefficient constitutive inhibition of P2X3 receptors by brain natriuretic peptide system contributes to sensitization of trigeminal sensory neurons in a genetic mouse model of familial hemiplegic migraine. *Mol Pain.* 12:17448069166461102016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 19 Zhang C, Wang P, Jiang P, Lv Y, Dong C, Dai X, Tan L and Wang Z: Upregulation of lncRNA HOTAIR contributes to IL-1 β -induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis. *Gene.* 586:248–253. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 20 Liu Q, Zhang X, Dai L, Hu X, Zhu J, Li L, Zhou C and Ao Y: Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis. *Arthritis Rheumatol.* 66:969–978. 2014. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 21 Steck E, Boeuf S, Gabler J, Werth N, Schnatzer P, Diederichs S and Richter W: Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions. *J Mol Med (Berl).* 90:1185–1195. 2012. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 22 Su W, Xie W, Shang Q and Su B: The long noncoding RNA MEG3 is downregulated and inversely associated with VEGF levels in osteoarthritis. *Biomed Res Int.* 2015:3568932015. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)
- 23 Hashizume M, Koike N, Yoshida H, Suzuki M and Mihara M: High molecular weight hyaluronic acid relieved joint pain and prevented the progression of cartilage degeneration in a rabbit osteoarthritis model after onset of arthritis. *Mod Rheumatol.* 20:432–438. 2010. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

24 Knipper M, Richardson G, Mack A, Müller M, Goodyear R, Limberger A, Rohbock K, Köpschall I, Zenner HP and Zimmermann U: Thyroid hormone-deficient period prior to the onset of hearing is associated with reduced levels of beta-tectorin protein in the tectorial membrane: Implication for hearing loss. *J Biol Chem.* 276:39046–39052. 2001. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

25 Gotoh M, Nagano A, Tsukahara R, Murofushi H, Morohoshi T, Otsuka K and Murauchi-Murofushi K: Cyclic phosphatidic acid relieves osteoarthritis symptoms. *Mol Pain.* 10:522014. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

26 Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2^{-Delta Delta C(T)} method. *Methods.* 25:402–408. 2001. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

27 Ohta S, Harigai M, Tanaka M, Kawaguchi Y, Sugiura T, Takagi K, Fukasawa C, Hara M and Kamatani N: Tumor necrosis factor-alpha (TNF-alpha) converting enzyme contributes to production of TNF-alpha in synovial tissues from patients with rheumatoid arthritis. *J Rheumatol.* 28:1756–1763. 2001. [PubMed/NCBI](#)

28 Guo J, Fang W, Sun L, Lu Y, Dou L, Huang X, Sun M, Pang C, Qu J, Liu G and Li J: Reduced miR-200b and miR-200c expression contributes to abnormal hepatic lipid accumulation by stimulating JUN expression and activating the transcription of srebp1. *Oncotarget.* 7:36207–36219. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

29 Li YF, Li SH, Liu Y and Luo YT: Long noncoding RNA CIR promotes chondrocyte extracellular matrix degradation in osteoarthritis by acting as a sponge for Mir-27b. *Cell Physiol Biochem.* 43:602–610. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

30 Gupta G, Radhakrishna M, Chankowsky J and Asenjo JF: Methylene blue in the treatment of discogenic low back pain. *Pain Physician.* 15:333–338. 2012. [PubMed/NCBI](#)

31 Kallewaard JW, Geurts JW, Kessels A, Willemse P, van Santbrink H and van Kleef M: Efficacy, safety, and predictors of intradiscal methylene blue injection for discogenic low back pain: Results of a multicenter prospective clinical series. *Pain Pract.* 16:405–412. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

32 Peng B, Pang X, Wu Y, Zhao C and Song X: A randomized placebo-controlled trial of intradiscal methylene blue injection for the treatment of chronic discogenic low back pain. *Pain.* 149:124–129. 2010. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

33 Rundell SD, Goode AP, Suri P, Heagerty PJ, Comstock BA, Friedly JL, Gold LS, Bauer Z, Avins AL and Nedeljkovic SS: Effect of comorbid knee and hip osteoarthritis on longitudinal clinical and health care use outcomes in older adults with new visits for back pain. *Arch Phys Med Rehabil.* 98:43–50. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

34 Saleh KJ and Davis A: Measures for pain and function assessments for patients with osteoarthritis. *J Am Acad Orthop Surg.* 24:e148–e162. 2016. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

35 Lee BH, Hwang DM, Palaniyar N, Grinstein S, Philpott DJ and Hu J: Activation of P2X(7) receptor by ATP plays an important role in regulating inflammatory responses during acute viral infection. *PLoS One.* 7:e358122012. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

36 Lee JS and Ro JY: Peripheral metabotropic glutamate receptor 5 mediates mechanical hypersensitivity in craniofacial muscle via protein kinase C dependent mechanisms. *Neuroscience*. 146:375–383. 2007. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

37 Li M, Silberberg SD and Swartz KJ: Subtype-specific control of P2X receptor channel signaling by ATP and Mg²⁺. *Proc Natl Acad Sci USA*. 110:E3455–E3463. 2013. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

38 Klapperstück M, Büttner C, Schmalzing G and Markwardt F: Functional evidence of distinct ATP activation sites at the human P2X(7) receptor. *J Physiol.* 534:25–35. 2001. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

39 Nikolic P, Housley GD, Luo L, Ryan AF and Thorne PR: Transient expression of P2X(1) receptor subunits of ATP-gated ion channels in the developing rat cochlea. *Brain Res Dev Brain Res.* 126:173–182. 2001. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

40 Liu PF, Fang HZ, Yang Y, Zhang QQ, Zhou QQ, Chen SS, Zhou F and Zhang LC: Activation of P2X3 receptors in the cerebrospinal fluid-contacting nucleus neurons reduces formalin-induced pain behavior via PAG in a rat model. *Neuroscience*. 358:93–102. 2017. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

41 Yu J, Fu P, Zhang Y, Liu S and Cui D: Pregabalin alters nociceptive behavior and expression level of P2X3 receptor in the spinal dorsal horn in a rat model induced by chronic compression of the dorsal root ganglion. *Anat Rec (Hoboken)*. 296:1907–1912. 2013. [View Article](#) : [Google Scholar](#) : [PubMed/NCBI](#)

Related Articles

Baicalin relieves neuropathic pain by regulating α2-adrenoceptor levels in rats following spinal nerve injury

MicroRNA-200b relieves LPS-induced inflammatory injury by targeting FUT4 in knee articular chondrocytes *in vitro*

Bupivacaine effectively relieves inflammation-induced pain by suppressing activation of the NF-κB signalling pathway and inhibiting the activation of spinal microglia and astrocytes

Emodin inhibits HDAC6 mediated NLRP3 signaling and relieves chronic inflammatory pain in mice

Rosuvastatin relieves myocardial ischemia/reperfusion injury by upregulating PPAR-γ and UCP2

29th International Congress on Molecular Medicine 2nd Eurasian Conference

17-19 October 2025

Kuala Lumpur
Malaysia

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)

30th International Congress on Molecular Medicine

6-8 November 2025

Acicastello, Catania, Sicily
Italy

DEMETRIOS A. SPANDIDOS

THE CANCER
STORY

THE DISCOVERY OF
CELLULAR ONCOGENES

There is no doubt that the discovery of cellular oncogenes changed our views on the most devastating of human diseases: cancer. That is the reason why it is considered the most significant discovery of the 20th century. From the time of Hippocrates, the father of medicine who first described cancer, until the discovery of cellular oncogenes, very little progress had been made concerning an explanation to the causes of cancer, its diagnosis and treatment. The fact that under the category of cancer approximately 200 forms of diseases are included affecting almost every part of the human body, made it difficult to pinpoint the cause as well as control its result. However, the development of a variety of technological achievements, namely tissue culture, recombinant DNA technology, gene transfer techniques and so on, made the ideological approach feasible. By using the above techniques, it was possible to isolate human oncogenes; in other words, the genes responsible for the creation of benign or malignant growth of human tumours (oncos).

[Download pdf](#)

Dates of the conference to be announced

WORLD ACADEMY
OF SCIENCES

HeyDAY ROAD

[This site uses cookies](#)

You can change your cookie settings at any time by following the instructions in our [Cookie Policy](#). To find out more, you may read our [Privacy Policy](#). [I agree](#)